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Abstract Secretion from the salivary glands is driven by

osmosis following the establishment of osmotic gradients

between the lumen, the cell and the interstitium by active

ion transport. We consider a dynamic model of osmotically

driven primary saliva secretion and use singular perturba-

tion approaches and scaling assumptions to reduce the

model. Our analysis shows that isosmotic secretion is the

most efficient secretion regime and that this holds for

single isolated cells and for multiple cells assembled into

an acinus. For typical parameter variations, we rule out any

significant synergistic effect on total water secretion of an

acinar arrangement of cells about a single shared lumen.

Conditions for the attainment of isosmotic secretion are

considered, and we derive an expression for how the con-

centration gradient between the interstitium and the lumen

scales with water- and chloride-transport parameters.

Aquaporin knockout studies are interpreted in the context

of our analysis and further investigated using simulations

of transport efficiency with different membrane water

permeabilities. We conclude that recent claims that aqu-

aporin knockout studies can be interpreted as evidence

against a simple osmotic mechanism are not supported by

our work. Many of the results that we obtain are inde-

pendent of specific transporter details, and our analysis can

be easily extended to apply to models that use other pro-

posed ionic mechanisms of saliva secretion.

Keywords Fluid and electrolyte secretion in salivary

glands � Epithelial transport � Mathematical modeling �
Efficiency � Aquaporin

Introduction

Appropriate control of salivary fluid secretion is required

for effective speech, mastication and general oral health.

Salivary gland dysfunction affects a significant number of

people (around 20% in the United States) and is often a

consequence of certain medications or irradiation therapy,

as well as being associated with diseases such as cystic

fibrosis and Sjögren syndrome. Dysfunction can lead to

oral pain, dental cavities and infections, as well as diffi-

culties with eating and speaking.

Anatomically, there are three major pairs of salivary

glands expressed in mammals: the parotid, submandibular

and sublingual glands. These glands are primarily com-

posed of two epithelial cell types—the acinar cells, which

are arranged in clusters around a lumenal space forming the

acini responsible for the secretion of salivary fluid and

most salivary proteins, and the ductal cells, which modify
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the composition of the saliva and secrete additional pro-

teins as the saliva travels to the mouth. Most saliva

secretion is due to the parotid and submandibular glands,

with the parotid gland supplying the larger share.

Thaysen et al. (1954) proposed that saliva secretion is a

two-stage process. The first step consists of the secretion of

an isotonic, plasma-like primary fluid by the acini. This is

followed by a modification of the ionic composition of this

primary secretion by the ductal cells, during which there is

little or no additional secretion or absorption of water. The

final solution is then hypotonic by the time it enters the

mouth.

A variety of ionic mechanisms have been proposed to

account for the primary secretion by the acinar cells (see,

e.g., Turner et al. 1993; Cook and Young 2010). Each of

these mechanisms involves active ion transport, with ions

taken up at one end of a cell and secreted at the other,

establishing a transepithelial osmotic gradient which water

follows. For two of the mechanisms discussed by Turner

et al. (1993) and Cook and Young (2010), the secreted

anion is chloride, while another involves the secretion of

bicarbonate (the authors also discuss the experimental

evidence for each of these processes). Rather than being

strictly competing, it appears that a variety of processes act

concurrently in the same gland, and possibly even in the

same cell, to secrete fluid, with the relative importance

varying over species, gland type and physiological condi-

tion. The chloride-based mechanism adopted in this report

is thought to account for the majority of saliva secretion

from the major salivary glands (Turner and Sugiya 2002).

Regardless of the particular ionic mechanism, the

common feature of these explanations for fluid secretion is

that salivary fluid flow is due to an osmotic gradient

established between the lumenal region (surrounded by the

acinar cells) and the intracellular space as well as between

the intracellular space and the interstitium. This gives rise

to a directed transcellular flow of water, from the inter-

stitium into the intracellular region, then from the intra-

cellular space into the lumen and out into the duct (see

Fig. 1). The possibility of water moving via a paracellular

pathway utilizing either the osmotic gradient between the

lumen and the interstitium (established by the same

mechanisms) or some alternative mechanism has also been

much discussed in the literature on epithelial transport

(Spring 1999; Hill et al. 2004; Hill 2008).

Notable models of osmotically driven fluid transport

include the three-compartment model of Curran (1960) and

the ‘‘standing-gradient’’ model of Diamond and Bossert

(1967), both of which have been the basis of much of the

work in this area. The primary motivation of the Curran

(1960) model was to explain transport against an adverse

osmotic gradient (between bathing solutions) by utilizing a

middle coupling compartment bounded by membranes with

differing solute and solvent-transport properties (Friedman

2008). Diamond (1964) criticized the ability of this model

to represent isotonic transport, and this led to the develop-

ment of the Diamond and Bossert (1967) model, which

includes spatial gradients of concentration in the coupling

compartment. Weinstein and Stephenson (1979, 1981a, b)

emphasized that the issues of approximate isotonic trans-

port and transport in the complete absence of, or against

(uphill), osmotic gradients need to be distinguished and that

each depends on a different combination of parameters. Of

particular relevance here, Weinstein and Stephenson (1979,

1981a, b) recognized that the attainment of approximate

isotonicity of transport depends essentially only on the cell

membrane water permeability, which must be sufficiently

high (while the ability to transport in the absence of, or

against, an adverse osmotic gradient depends on restrictions

of solute movement, e.g., via a basement membrane for

absorptive epithelia and/or restricted diffusion in the rele-

vant coupling compartment). Mathias and Wang (2005)

considered a simple model of isotonic secretion and simi-

larly demonstrated how small osmotic gradients between

the cell and the compartments on either side of the cell

which are close to, but not exactly, zero can produce near-

isotonic fluid transport. Both sets of authors note that when

the gradients are forced to be exactly zero, the secretion

drops significantly and becomes much less isotonic.

As pointed out by a number of authors, models based on

the standing-gradient model reduce in many cases to

approximate mappings of the original compartment Curran

(1960) model onto the appropriate physiological system

(Weinstein and Stephenson 1981a; Spring 1999; Mathias

and Wang 2005; Friedman 2008). Furthermore, although

most models have been primarily concerned with fluid-

absorbing epithelia, fluid secretion can also be understood

using the basic conceptual scheme of the Curran (1960)

model, as explained by Spring (1999). The resulting expla-

nation of isotonic transport is thus given in terms of an

osmotic coupling mechanism operating in the presence of

small, but non-zero, gradients. This osmotic model is con-

sidered the ‘‘normal science’’ in epithelial transport (Schultz

2001); but as mentioned, this view has been and continues to
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Fig. 1 Transcellular fluid secretion. Left direction of fluid flow. Right
one mechanism, utilizing secretion of chloride, involved in fluid

secretion
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be criticized (Hill 2008; Fischbarg 2010), and many other

mechanisms have been proposed for the process of fluid

transport (e.g., Hill (2008) discusses various proposed

mechanisms). In particular, Fischbarg (2010), Shachar-Hill

and Hill (2002), Hill et al. (2004), and Hill (2008) have

criticized the interpretation of aquaporin knockout studies,

such as those of Ma et al. (1999), which are commonly used

as support for the osmotic mechanism, and even suggest that

aquaporins have gone from ‘‘saviors’’ of the osmotic theory

to ‘‘its major problem’’ (Hill 2008). In the discussion we

consider the results of aquaporin knockout studies and their

various interpretations in the context of our analysis and

simulations of a model of osmotically driven transcellular

fluid flow. Furthermore, a common argument of those who

accept the osmotic mechanism but reject the paracellular

pathway is that the area of the tight junctions is too small to

be permeable enough to admit a significant osmotic water

flux (e.g., Spring (2010) offers a good discussion of this). In

response to this, the main advocates of a paracellular water

pathway tend to argue that a paracellular flux must be driven

by nonosmotic mechanisms (Shachar-Hill and Hill 2002).

Since we adopt the osmotic mechanism for this model, for

consistency we initially ignore the paracellular route but

come back to this in the discussion.

As discussed above, the modeling literature includes

many primarily osmotically driven models of fluid trans-

port, which have been analyzed by a number of authors,

e.g., Weinstein and Stephenson (1979, 1981a, b) and

Mathias and Wang (2005) (and both include aspects based

on the earlier analysis of Segel (1970) of the Diamond and

Bossert (1967) model). Both sets of authors utilize linear-

izations/perturbation expansions about the condition of

isotonic/isosmotic transport and consider steady-state

conditions. Our work takes a similar approach to analysis

of the model behavior and conditions for (approximate)

isotonic secretion. The main points of difference of our

work are that (1) we focus on the problem of secretion into

a small compartment, rather than the more common

absorption from a small compartment (and into a larger

bath); (2) we consider not only linearized/perturbation

approximations to the model equations about the condition

of isotonic/isosmotic secretion but also significant devia-

tions from this state; and (3) our analysis applies directly to

a (physiologically detailed) dynamic model, and hence, we

work mostly in terms of scales and quasi-steady states as

opposed to steady-state fluxes. In regard to point (1), while

authors such as Weinstein and Stephenson (1979, 1981a, b)

make reference to, and perform some calculations for,

absorption from a mucosal (apical/lumenal) compartment

into a small serosal (basal) compartment, which is an

arrangement essentially equivalent to the secretion prob-

lem, they give more emphasis to the problem of absorption

from a small mucosal bath into a large serosal bath. After

linearization, these cases become more symmetric; but for

larger deviations the interaction of the secretion into the

small bath, convective removal from the bath and the

concentration of the bath become important. Mathias and

Wang (2005) gave more attention to this arrangement;

however, they focused primarily on a perturbation solution

to steady-state equations and applications to the renal

proximal tubule. In regard to point (2), we only consider

the standard linear phenomenological relationship for

osmosis (described, e.g., in Schultz 1980); but we consider

the effects of retaining nonlinear terms in the resulting

model equations, in particular the term, discussed above,

resulting from convective removal out of the lumen.

The model we consider is a physiologically based,

dynamic, calcium-regulated model of primary saliva

secretion, previously published by Gin et al. (2007), which

consists of a system of nonlinear ordinary differential

equations. Utilizing the approximation methods described

above (scaling and singular perturbation methods) in

combination with simulations of the full model, we explore

fluid secretion as water permeability is decreased and

secretion is no longer near the isotonic/isosmotic regime.

This enables us to consider the consistency of the osmotic

mechanism adopted here with aquaporin knockout studies

such as those of Ma et al. (1999), in light of the criticisms

by authors such as Hill et al. (2004) of the traditional

interpretations of these studies.

Transcellular Fluid Secretion Model

Here, we consider a single-cell model based on Gin et al.

(2007) for primary fluid secretion through a transcellular

pathway. The ionic mechanism represented is that thought

to be responsible for the bulk of the secretion in the major

salivary glands (Turner and Sugiya 2002). In this model,

the movement of Cl- through the transcellular pathway, as

well as the movement of Na? and K? via a paracellular

pathway, sets up the required osmotic gradients between

the three spaces. Based on the schematic model illustrated

in the right panel of Fig. 1, we can write down the gov-

erning equations for conservation of ions and water vol-

ume. In what follows, the subscripts ‘‘e,’’ ‘‘i’’ and ‘‘l’’

denote interstitial (extracellular), intracellular and lumenal

compartments, respectively, which we assume to be well

mixed. We do, however, allow a variable cell volume, w.

Cell Equations

The conservation of Cl- ions in the intracellular region

gives
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dð½Cl�iwÞ
dt

¼ � ICl

zClF
þ 2JNKCC ð1Þ

where F is the Faraday constant and zCl = -1 is the

valence of Cl-. Here, Cl- is brought into the cell via the

Na?–K?–2Cl- cotransporter (JNKCC) in the basolateral

membrane, and efflux is via the apical Cl- channel (ICl).

The cotransporter moves two Cl- ions for every K? and

Na? ion. Similarly, conservation of Na? ions in the

intracellular region gives

dð½Na�iwÞ
dt

¼ �3JNaK þ JNKCC ð2Þ

Influx of Na? is due to the cotransporter, while efflux is

due to the Na?–K?–ATPase (JNaK), which pumps three

Na? ions out for every two K? ions pumped in.

Conservation of K? ions in the intracellular region gives

dð½K�iwÞ
dt

¼ 2JNaK þ JNKCC �
IK

zKF
ð3Þ

These fluxes are due to the ATPase, the cotransporter and

the K? channel (IK) in the basolateral membrane.

Since we allow a variable cell volume, conservation of

water in the intracellular region must be taken into account,

giving

dw

dt
¼ qb � qa ð4Þ

where

qa ¼ RHLpaðcl � ciÞ ð5Þ

qb ¼ RHLpbðci � ceÞ ð6Þ

are the apical and basolateral water volume fluxes,

respectively, and ce, ci and cl are the total osmolyte con-

centrations in each region. Lpa and Lpb are the total water

permeabilities of each membrane (area-weighted as in Gin

et al. (2007), see Appendix A), R is the universal gas

constant and H is the temperature. Note that the total

intracellular concentration includes cell-impermeant X at

concentration X/w and intracellular messengers such as

Ca2?.

Lumen Compartment

We assume that all external concentrations (composing ce)

surrounding the basolateral membrane remain unchanged;

however, we allow variable lumenal concentrations. The

lumenal region into which the primary secretion occurs is a

small region surrounded by a spherical arrangement of

acinar cells located in a secretory end piece (acinus). The

primary secretion produced from the acinar cells then flows

from the acinus lumen into a system of ducts of increasing

size, beginning with the intercalated ducts. Due to the small

dimensions of the lumenal region, we model this as well

mixed. If we assume no volume change of the lumen and

no pressure buildup, the water flux leaving the lumen is

equal to qa, the rate of secretion into the lumen. Further-

more, since the primary secretion is isotonic (in accordance

with the two-stage hypothesis of Thaysen et al. 1954) and

is pushed out as a combined bulk flow into the duct system,

we assume that the removal of all ions, in particular Cl-,

from the lumen is dominated by convection by water. The

second stage of transport, when the saliva is in the duct

system, involves modification of the saliva composition

along the duct length. However, here we model only the

primary secretion from the secretory end pieces, and ductal

transport and associated concentration changes are not

considered further. This gives the lumenal Cl- conserva-

tion equation

wl

d½Cl�l
dt
¼ ICl

zClF
� qa½Cl�l ð7Þ

where wl is the lumenal volume surrounded by the acinar

cells, which has an opening into the duct system.

Bicarbonate secretion is also thought to be involved in

primary saliva secretion, although to a lesser extent than

the chloride-based mechanism represented here (Turner

and Sugiya 2002). It is not included in this model, and we

briefly consider this assumption in the Discussion.

Voltage and Paracellular Ion Fluxes

In our model Na? and K? travel via the paracellular

pathway, which are assumed to be cation-selective in

accordance with the basic proposed mechanisms of saliva

secretion (Cook and Young 2010). We consider the tight

junction to be a simple membrane, with no ion–ion inter-

actions. Furthermore, as discussed in the Introduction, we

assume a fully transcellular pathway for water (and via an

independent route—the aquaporins—to the chloride ions),

so there is no convective transport. We return to these

assumptions in the Discussion.

Assuming electrochemically driven fluxes, the K? tight

junction flux could, e.g., be represented as

It
K ¼ gt;KðVt � VKÞ ð8Þ

It
Na ¼ gt;NaðVt � VNaÞ ð9Þ

where gt,K, gt,Na, VK and VNa are the tight junction potas-

sium and sodium conductances and Nernst potentials

(between the interstitium and lumenal compartments),

respectively, and Vt is the voltage difference between the

lumen and interstitium.

Palk et al. (2010) discuss how to complete an electro-

physiological model of this type, and they include differen-

tial equations for distinct apical and basolateral membrane

32 O. J. Maclaren et al.: Efficiency of Primary Saliva Secretion

123



voltages. However, to good approximation (due to the small

membrane capacitances), we replace these differential

equations by electroneutrality constraints in each region.

This is equivalent to taking a quasi-steady-state approxi-

mation of the differential equations, in which the voltage

variables are slaved to the remaining variables. Based on

these constraints, the total cation ion current (It
Na þ It

K) must

be such that it is equal to the total anion current (here, ICl).

It
Na þ It

K ¼ ICl ð10Þ

at all times. Given an initially electroneutral lumen, this

implies

½Na�l þ ½K�l ¼ ½Cl�l ð11Þ

Furthermore, when the lumenal fluid is approximately

isotonic to the interstitium, the Nernst potential terms in

(8) and (9) are negligible, and the currents are driven

primarily by the same voltage difference. In this case, the

relative amount of flux of Na? to K? is simply

determined by the ratio of the respective conductances.

Since the convective removal of a given ion from the

lumen is proportional to its lumenal concentration and

since K½ �l� Na½ �l: (from isotonicity we expect these

concentrations to be close to their interstitial values),

we would expect that gt;K � gt;Na:

The relative tight junction conductances are, in fact, not

important here—the model behavior is independent of the

actual proportion of cation current due sodium or potas-

sium, respectively (other than in determining the propor-

tions themselves, of course). Only (11) is actually required

in the analysis that follows. For simplicity of simulation,

we assume that the amount of potassium flux is such that

the lumenal potassium concentration, [K]l, is maintained at

a value exactly equal to the interstitial potassium concen-

tration, [K]e (noting that K? must be removed into the duct

system along with the secreted fluid). This leaves the

sodium flux as a variable to be determined by the elec-

troneutrality constraint. These assumptions give

½K�l ¼ ½K�e ð12Þ

½Na�l ¼ ½Cl�l � ½K�l ð13Þ

though again we emphasize that, here, neither (12) nor (13)

is required in the analysis that follows and the model

results do not depend on either. Gin et al. (2007) used a

constraint of electroneutrality between the lumen and the

interstitium, i.e., [Na]l = [Na]e - [Cl]e ? [Cl]l instead of

(13), which is in fact an equivalent assumption, given (12).

Palk et al. (2010) considered the effects of adding a small

apical potassium channel density, in which case the pro-

portion of the cation concentration made up by sodium and

potassium, respectively, does matter. This is beyond the

scope of the present study, though extensions of our

analysis are possible, e.g., by using assumptions on the

potassium-to-sodium conductance ratio.

An electroneutrality constraint must also be specified for

the cell compartment and, as for the lumenal region, this

simply states that the fluxes of positive and negative charge

must balance to give no net charge imbalance inside the

cell. This allows the cell membrane voltage to be deter-

mined as an implicit function of the concentrations and

volume, in terms of an equation of analogous form to (10).

This equation also requires including calcium fluxes

through the basolateral membrane (calcium signaling is

discussed in the following section), and it is not required

for the analysis that follows (though it is required in the full

simulation model).

This completes our fluid flow model, without concern

for the underlying details of channel/transporter activity

and messenger dynamics. We can obtain some conclusions

about this model irrespective of these details, while for full

simulations and additional analysis we require explicit

functional forms for these model aspects. The details used

in that case follow Gin et al. (2007) and are briefly outlined

in the next section. The full model equations and param-

eters are provided in the supplementary material.

Channels, Transporters and Signaling

The model we consider here is based on that of Gin et al.

(2007). This model can conceptually be broken into two

main parts—a three-compartment electrophysiological

model of ion and water fluxes, which was described in the

previous section, and a model of an oscillating calcium

signal. We outline some of the properties of the model

components here.

Ion and Water Transport

Here, we use the ion- and water-transport model of Gin

et al. (2007, as detailed on pages 65–68, Tables 1–3 and

the Appendices A and B).

Calcium-Dependent Channels

The ionic mechanism used in this model involves a Ca2?-

activated Cl- channel in the apical membrane and a Ca2?-

activated K? channel in the basolateral membrane, in

accordance with the literature (Turner et al. 1993; Cook

and Young 2010). The steady-state open probability of the

Cl- channel is Ca2?-dependent and includes voltage-

dependent equilibrium constants. Gin et al. (2007) based

this on a model developed for rat parotid acinar cells by

Arreola et al. (1996). The K? channel open probability is

Ca2?-dependent but voltage-independent, in accordance
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with the study of Takahata et al. (2003) on bovine parotid

acinar cells.

ATPase

The model includes an Na?–K?–ATPase, which maintains

low [Na?] and high [K?] in the cell, relative to the inter-

stitium. It exchanges three Na? for two K? at the expen-

diture of ATP. Gin et al. (2007) used a reduced model by

Smith and Crampin (2004), originally based on a model by

Läuger and Apell (1986).

Cotransporter

The model includes a Na?–K?–2Cl- electroneutral

cotransporter, a secondary active transport system which is

the main uptake pathway for Cl-. Gin et al. (2007) con-

sidered a 10-state scheme proposed by Lytle and McManus

(1986) and formulated as a system of differential equations

by Benjamin and Johnson (1997). They reduced this to a

two-state model and then took the steady-state flux. We use

this here.

Calcium Signaling Model

Here, we are primarily concerned with the ion and fluid

transport, though under the influence of an oscillating Ca2?

signal. We are not as concerned with how the Ca2? signal

is generated. For this we refer to Palk et al. (2010), who

describe modifications to the Gin et al. (2007) model. Our

model has one slight difference again from the Palk et al.

(2010) model, which is described in our Appendix B. Other

than this, the signaling model is identical to that of Palk

et al. (2010) and follows the details given in their article

(see pp. 626–628 and Tables 1–3).

Analysis of a Single-Cell Model

The primary secretion formed in the lumen is known to be

approximately isotonic to the source bath. This is usually

viewed as being due to the relatively high water perme-

ability for epithelial fluid transport (Turner and Sugiya

2002; Spring 1998). It is also known that the geometry of

the acinus is such that the lumenal space is significantly

smaller in volume than the acinar cells themselves. Here,

we use the mathematical model to investigate the impli-

cations of these physiological observations.

Fluid Secretion and Scales

We first consider the equation governing the lumenal

chloride concentration, [Cl]l (7), and the implications of a

large water permeability (relative to other cell transport

parameters) and a small lumen volume (relative to cell

volume).

Estimate of Scale for Lumenal Concentration Increase

To begin, we will perform a scaling analysis and nondi-

mensionalization of Eq. 7. Perspectives and case studies on

scaling methods are offered in, e.g., Segel (1972), Segel

and Slemrod (1989), Segel and Goldbeter (1994) and

Krantz (2007). The results we obtain from this analysis will

be compared in detail with simulations of the full model.

To be consistent with the requirement of (approximate)

isotonicity of the secretion, the change in the lumenal

concentrations must be small. In this model, the chloride

current is the primary driver of the change in lumenal

concentrations as the total cation ion concentration is

determined by the lumen electroneutrality constraint (11).

Thus, the change in total ion concentration in the lumen

will be twice that of the chloride concentration, and both

should be small for the model to reproduce expected

results. In order to account for this in our scale for lumenal

chloride concentration, we first define the new variable

½Cl�ld ¼ ½Cl�l � ½Cl�e ð14Þ

which represents the increase of [Cl]l above [Cl]e. We now

wish to define a scale for the change in [Cl]ld between

stimulated and unstimulated conditions. We estimate this

by considering the prestimulation steady state and

poststimulation steady state of (7), without yet

considering the dynamics in between or the effect of

oscillations. Using (14), the steady-state relation obtained

from (7) can be written as

ICl

zClF
¼ qa ½Cl�ld þ ½Cl�e

� �
ð15Þ

To estimate the change in [Cl]ld, we will assume for now that

(15) holds both pre- and poststimulation, which we will

denote by using a superscript ‘‘s’’ to indicate the post-

stimulation values (‘‘stimulated’’) and a superscript ‘‘u’’ to

represent the prestimulation values (‘‘unstimulated’’). Later,

we will consider conditions for the steady state to hold during

cell stimulation and an oscillating calcium signal, i.e.,

conditions for a quasi-steady state to hold for the actual

variables (no superscript). Since cl – ci \ cl – ce = Dc and

from electroneutrality Dc = 2[Cl]ld, we can define a scale

for the poststimulation fluid secretion rate as

qs
a� 2RHLpad ð16Þ

where d is a scale parameter representing the maximum

change in lumenal chloride concentrations (and is also a

representative scale for total concentration changes since
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these only differ by a factor of 2) and for which we will

next determine an estimate in terms of the fluid- and

chloride-transport parameters. Nondimensional quantities

(represented by asterisks) can now be introduced for qs
a,

½Cl�sld: and Is
Cl, defined via

½Cl�sld ¼ d½Cl�s�ld ; Is
Cl ¼

zClgClRH
F

Is�
Cl;

qs
a ¼ 2RHLpadqs�

a ;
ð17Þ

where gCl is a chloride conductivity parameter and d is the

chloride concentration change scale as defined above. The

open probability of the chloride channel is typically much

lower than 1—e.g., based on Palk et al. (2010) a value of

around 0.1 is typical—hence, for simplicity of analysis, we

take gCl to represent the product of the whole-cell chloride

conductivity and the maximum open probability. Thus, for

cells with identical physical characteristics, a higher gCl

will represent a higher open probability, i.e., a higher

stimulation level. We have also included the valency

zCl = -1 in the nondimensionalization of ICl so that I�Cl is

the magnitude of the chloride flux into the lumen. These

scalings will ensure that the nondimensional poststimulation

chloride current into the lumen and the poststimulation

convective chloride removal out of the lumen have a

nondimensional magnitude of about one. Using the same

scalings for prestimulation values will mean that the

resulting nondimensional values are small compared to one

as we will assume that prestimulation values are at least an

order of magnitude smaller than poststimulation values.

Applying the steady-state equation to both cases and

combining, we obtain

gCl

ð2Lpa½Cl�2eF2

 !

Is�
Cl þ Iu�

Cl

� �
¼ d
½Cl�e

� �

� d
½Cl�e

qs�
a ½Cl�s�ld þ qu�

a ½Cl�u�ld
� �

þ qs�
a þ qu�

a

� �
� 	

ð18Þ

By neglecting the nondimensional prestimulation values

(setting to zero) and setting the nondimensional poststim-

ulation terms to exactly one, we can obtain an estimate of d,

the scale of lumenal (chloride) concentration change.

Solving (18) with these conditions (and taking the positive

solution) gives

d
½Cl�e

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�d

p
� 1

� �
¼ �d � �2

d þ 2�3
d þ Oð�4

dÞ ð19Þ

where the series is derived from a binomial series

(converging for j�dj\1=4), and we have defined

�d 	
gCl

2Lpa½Cl�2eF2
ð20Þ

For �d� 1, we see from the series expansion that

d
½Cl�e


 �d ð21Þ

This will represent our scale under near-isotonic conditions.

Note that this also represents the scale of total lumenal

concentration change since d
½Cl�e
¼ 2d

2½Cl�e
¼ 2d

Ce
� DC

Ce
. Consid-

ering this preliminary result, it is apparent that when the

permeability is relatively large the fluid secretion term

requires only very small differences in concentrations to

balance the ion transport, and we obtain the isosmotic/iso-

tonic case. This implies not only that isosmotic secretion

requires large permeabilities (to generate enough fluid

transport) but also that large permeabilities tend to produce

isosmotic secretion. This is consistent with the conditions

for iso-osmoticity given by Mathias and Wang (2005)

(their Eq. 2) and Weinstein and Stephenson (1981b) (their

Eq. 1-21). Later, we will consider the water permeability to

be the main physical parameter controlling the size of these

dimensionless groups since it is the large permeability of

salivary cells (compared to other non-water-transporting cell

types) that is most noteworthy. In addition to the near-isos-

motic regime (�d;
d
½Cl�e
� 1), we will consider how fluid

secretion is affected when the ratio of chloride to water-

transport parameters is no longer small, i.e., �d not negligible

compared to 1, and hence significant osmotic gradients

develop, i.e., d
½Cl�e

no longer negligible compared to 1. Based

on (19), we expect osmotic gradients ( d
½Cl�e

) to grow more

slowly than the ratio of transport parameters (�d).

Nondimensional Equation and Identification of Small

Parameters

Returning to the main scaling analysis of (7) and consid-

ering (21), we can now introduce the following scalings,

based on the isosmotic scales:

½Cl�ld ¼
gCl

2Lpa½Cl�eF2
½Cl��ld; ICl ¼

zClgClRH
F

I�Cl;

qa ¼
gClRH
½Cl�eF2

q�a ; t ¼ Tt�;
ð22Þ

where T represents an as yet unspecified time scale of

interest (the observation scale [Krantz 2007]), and the rest

is consistent with the preceding analysis. As mentioned, the

scale chosen for qa is now fixed at the isosmotic scale, so q�a
here will represent the ratio of qa to its isosmotic value

(which we will see is between 0 and 1). This scale is based

on that of the poststimulation scale (16) combined with our

scale for lumenal concentration changes in the limit of
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2d! 0 (21). By first writing (7) in terms of ½Cl�ld and then

substituting the scalings (22) into the result, we obtain

1

T

� �
wl

2RHLpa½Cl�e

� �
d½Cl��ld

dt�

¼ I�Cl � q�a
gCl

2Lpa½Cl�2eF2
½Cl��ld þ 1

 !

ð23Þ

The term wl

2RHLpa Cl½ �
e

occurring on the left-hand side has

dimensions of time, and we will call it Tt, taking it to

represent a transient time scale. If this is small compared to

our time scale of interest, i.e., Tt

T 	 �t � 1; then we obtain

the singular problem

�t

d½Cl��ld
dt�

¼ I�Cl � q�a �d½Cl��ld þ 1
� �

ð24Þ

where �d	 gCl

2Lpa½Cl�2e F2
¼ d
½Cl�e
� Dc

ce
, as before.

Time Scales of Interest

In order to determine under what circumstances we obtain

the singular form (24), i.e., under what circumstances the

condition Tt

T 	 �t � 1 holds, we need to consider what our

time scale(s) of interest is.

We first use the equation for volume dynamics (4) to

estimate the time scale over which significant changes in

volume occur. Employing the same scaling for qa and qb as

that used for qa in (22), using w ¼ w0w� to define the

scaling of cell volume and t ¼ Tt� for the time scale to be

estimated, (4) becomes

w0

T

dw�

dt�
¼ gClRH
½Cl�eF2

ðq�b � q�aÞ ð25Þ

During cell volume decrease, the volume flux out of the cell

will dominate over the volume uptake. A balance of the left-

hand side with the qa term gives an estimate of the time scale

for significant volume change. This can be achieved by

setting dw�

dt�
¼ q�a ¼ 1; q�b ¼ 0 and equating the scale factors,

giving an estimate for the volume change time scale:

T0 ¼
w0½Cl�eF2

gClRH
ð26Þ

We can then use this time scale as our time scale of interest

in (24), to obtain

ð�wÞð�dÞ
d½Cl��ld

dt�
¼ I�Cl � q�a �d½Cl��ld þ 1

� �
ð27Þ

where �w	 wl

w0
and �d	 gCl

2Lpa½Cl�2e F2
are each expected to be

small under physiological conditions, due to the small

lumenal volume (relative to cell volume) and the large water

permeability (relative to chloride-transport parameters).

Hence, we expect their product, �t, to be even smaller. This

indicates a wide separation of scales, so we will assume (27)

moves quickly (relative to the volume dynamics) to its quasi-

steady state, given by

I�Cl � q�a �d½Cl��ld þ 1
� �

¼ 0 ð28Þ

Since qa increases/decreases with increases/decreases of

[Cl]ld, we expect sufficiently small perturbations of [Cl]ld

(which leave ICl relatively unchanged, with any small

changes in ICl expected to occur in the opposite direction)

to return to the quasi-steady-state value. However, we do not

consider the stability of the quasi-steady state in any more

detail here. The equation of the steady state relating qa and ICl

will be exactly linear when �d ! 0, while for small values

(i.e., small deviations from iso-osmoticity) the relationship

falls below this curve. The dependence of fluid secretion on

chloride secretion is perhaps clearer if (28) is rewritten as

q�a ¼ 1� �d½Cl��ld
� �

I�Cl ð29Þ

which is valid to first order for small �d (taking a Taylor

series in �d). Hence, q�a\I�Cl for nonzero �d and has the

upper limit q�a\I�Cl for �d ! 0. This relationship will be

discussed in detail later, and we also consider how it

changes with non-negligible �d.

In order to consider the effects of an oscillating calcium

signal, we need to consider another time scale of interest, a

characteristic scale for the calcium spikes/oscillations.

Based on the results of the models of Gin et al. (2007) and

Palk et al. (2010) (which is the calcium signaling model used

here), we estimate this to be about one to two orders of

magnitude smaller than T0 as given in (26), i.e., between

0.1T0 and 0.01T0. Using this scale in (27) instead of T0 will

still result in a singular equation as long as the product of �w

and �d is sufficiently small, less than about 10-2–10-3. Based

on typical parameter values used in later simulations,

�w
� 10�2; and �d
10�3, up to a value of 1 for ‘‘low

permeability’’ (relative to usual high values) ranges, giving a

product of �t
10�5 to 10�2. This includes values of the

desired order of smallness. However, as the permeability

decreases, the system would be expected to still follow the

general trend of the quasi-steady state on the time scale T0 but

may fail to fully follow the quasi-steady state exactly on the

time scale of the calcium oscillations. The accuracy of the

quasi-steady-state approximation will be tested by checking

the correspondence to full simulations, and we will also

consider consequences of any failure to exactly follow the

oscillating quasi-steady state for low permeability values.

Cell Volume Quasi-Steady State

Although, as mentioned, the cell volume takes significantly

longer to reach a new steady state after stimulation than the
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lumenal concentrations, its steady state is still a useful tool

for analysis. In particular, we will use it to obtain an

approximation relating the fluid secretion to the change in

total lumenal concentrations, which is independent of the

internal cell concentrations. This will allow us to construct

a good analytic approximation to the quasi-steady state of

(27) relating qa to ICl only, which captures the dependence

on key parameters. The error in using the volume steady

state for this purpose will be assessed in comparisons to

simulations.

Expanding the expressions for qa and qb in (4) gives the

quasi-steady-state condition for the volume (qa = qb) as

Lpb

Lpa

¼ ðcl � ciÞ
ðci � ceÞ

ð30Þ

which can be rearranged to give an expression for ci as a

weighted average of cl and ce

ci ¼
Lpacl þ Lpbce

Lpa þ Lpb

ð31Þ

when Lpb is greater than Lpa, the steady-state total

osmolarity of the cell is closer to its initial value; and in

the converse case, the steady-state total osmolarity of the

cell is closer to that of the lumen. In either case the change

is small. Since the net fluid secretion is equal to qa, this

gives an approximate expression for the fluid secreted:

qa ¼ RHLTðcl � ceÞ; ð32Þ

where

LT ¼
LpaLpb

Lpa þ Lpb

ð33Þ

This expression for qa is consistent with our previous scaling

assumption for qa. Using cl � ce ¼ 2 Cl½ �l� Cl½ �e
� �

¼ 2 Cl½ �ld
in (32) and using the result to eliminate Cl½ ��ld in the lumen

quasi-steady-state relation (28) gives the quadratic relationship

aq�2a þ q�a � I�Cl ¼ 0 ð34Þ

where a 	 gCl

2LTF2 Cl½ �2e

� �
. The importance of the quadratic

deviation from the linear approximation (the isosmotic

case) is indicated by a, which measures the relative

magnitudes of the chloride secretion and the fluid secretion

and is proportional to �d ¼ d
Cl½ �e

(a has LT instead of Lpa).

We can use this expression to gain insight into the model,

and we compare the accuracy of this approximation against

simulations of the full model.

Efficiency of Secretion

Here, we consider the degree of deviations from the linear

relationship between q�a and I�Cl arising from keeping the

quadratic term in the quasi-steady-state relation (34). We

can solve (34) for q�a in terms of I�Cl, giving

q�a ¼
1

a

� �
1

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4aI�Cl

p
� 1

� �

¼ I�Cl 1� aI�Cl þ 2a2I�Cl

� �
þ Oða3Þ ð35Þ

which for I�Cl = 1 is

q�a ¼
1

a

� �
1

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a
p

� 1
� �

¼ 1� aþ 2a2 þ Oða3Þ

ð36Þ

These series expansions illustrate the behavior for small a
and converge for aI�Cl



 

� 1=4. Note also that the limits for

a! 0 exist and are equal to 1. When a is non-negligible,

we obtain the square-root relationship illustrated by the red

line in panel 1 of Fig. 2, which is bounded by the linear,

isosmotic limit. In the analysis here (and in following

sections) we consider the difference between a system

exactly following the linear form of the quasi-steady-state

relation and the system exactly following the quadratic

form of the quasi-steady-state relation. We include some

consideration of deviations from quasi-steady state in

comparisons to simulations, as well as later, in the dis-

cussion of aquaporin knockout studies.

This analysis demonstrates that for a given chloride

current ICl, a larger LT, i.e., a secretion closer to isosmotic,

gives a larger fluid flow. The decrease in q�a , for a fixed

chloride current (here, I�Cl = 1), as LT is decreased is

illustrated in panel 2 of Fig. 2. Starting from a small a

value, e.g., 10-3, LT can be decreased by several orders of

magnitude before changes in q�a become significant. As a
approaches 1, we see that fluid flow drops to 1// & 0.62%

of its isosmotic value (where / is the golden ratio), for

Fig. 2 Efficiency of fluid secretion. Two representations of the

behavior of the solution (35) of the quasi-steady-state equation (34)

relating fluid flow to chloride current for the large permeability limit

(upper bound, blue) and finite permeability (red). The singular (large

permeability, a = 0) isosmotic case is an upper bound for fluid

secretion and gives a greater flow at a fixed chloride current (1). For

fixed chloride current, the dependence of fluid flow on the ratio (a) of

the chloride and fluid transport parameters can be seen in 2, while the

change in shape of the whole solution is illustrated in 1. For small a
values, the decrease in fluid flow is roughly proportional, while the

rate of decrease is lower for larger a values (Color figure online)
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fixed chloride current. The chloride current is the main

driver of the change in lumenal concentrations (electro-

neutrality or a similar constraint gives the concentration of

the lumenal sodium), and maintaining this requires active

processes operating at the basolateral end of the cell.

Hence, we can consider (the isosmotic value of) ICl as a

measure of the energy used in secretion. Since isosmotic

secretion maximizes the flow for a given current, it is more

efficient by this measure than nonisosmotic secretion at this

same current. Although in this limit we are increasing the

permeability LT, we are also decreasing the concentration

gradient available since the scale of the concentration

difference is d � 1/LT (see the definition of a in Eq. 34).

By this interpretation, panel 2 of Fig. 2 illustrates the

change in fluid flow due to decreases in efficiency. Wein-

stein and Stephenson (1981b) and Hill and Hill (1978)

defined similar measures of efficiency and coupling

between solute and water fluxes in their studies of epithe-

lial fluid transport. However, in their definitions of effi-

ciency the authors required that the observed volume flow

be that obtained for exactly equal bathing media. We do

not make this restriction since we are interested in the

volume flow observed for small but non-zero osmotic

gradients.

The explanation for this maximal efficiency at isosmotic

secretion lies in the natural balance between the transport

of ions into the lumen and the removal of ions out of

lumen, given in nondimensional form by (28). In this

balance, the number of ions removed from the lumen per

unit saliva is determined by the osmotic gradient, with a

larger gradient giving a larger number of ions removed per

unit saliva. When the total ion removal rate is constrained

to balance a fixed ion current into the lumen, the largest

fluid flow rate satisfying this is achieved when the number

of ions removed per unit saliva is smallest; i.e., the osmotic

gradient is smallest. As shown in the previous subsection,

the size of the gradient, and hence the number of ions

removed per unit saliva, is determined by the ratio of the

chloride conductance gCl and the water permeability LT.

Also of note is that once the permeability LT is suffi-

ciently large, and hence a is sufficiently small, the secretion

is no longer dependent on LT and is essentially proportional

to the chloride current. Thus, the amount of fluid secreted

under isosmotic conditions is less affected by variations in

permeability than is nonisosmotic secretion. We will con-

sider this feature more in the Discussion, in particular in

the context of aquaporin knockout studies.

Numerical Simulations

We specify particular formulations for JNKCC, JNaK, ICl

and IK to complete the model discussed at a more general

level thus far. These fluxes/currents depend on calcium

signaling, IP3 dynamics and voltage. For these dependen-

cies, we follow Gin et al. (2007), with modifications

described in our Appendix B. In these simulations none of

the model approximations derived previously are used.

Baseline Behavior—Ion Concentrations and Volume

The basic behavior of the model is illustrated in Fig. 3. Fol-

lowing stimulation, chloride is secreted and the ion concen-

trations adjust to new levels, while the volume changes

according to the secretion rate. The oscillations are due to the

oscillatory nature of the calcium signaling (not shown).

The main intuitive features of the model response to

stimulation are the increased calcium signal, which

increases the open probability of the chloride channel and

hence chloride flows from the cell, decreasing its concen-

tration inside the cell; this decrease in chloride levels

causes a compensating increase in the rate of chloride

uptake via the cotransporter; this in turn increases the rate

of sodium and potassium uptake via the cotransporter; the

increase in cell sodium is offset by an increase in the

ATPase pump rate; the increases in potassium uptake and

pump rate are offset by the basolateral potassium channel,

the open probability of which is also increased by the

calcium increase.

Secretion, Efficiency and Variation in Permeabilities

Next we consider the question of efficiency and total

secretion for varying permeabilities (Fig. 4). It can be seen

that the quasi-steady-state expression relating fluid secre-

tion (qa) and chloride current (ICl) derived previously (34)

accurately accounts for the changes in fluid flow for the

different permeabilities. As expected, if the permeability is

large (Fig. 4a), the linear quasi-steady-state approximation

(the isosmotic limit) is sufficient to capture the behavior.

As the permeability is decreased (Fig. 4b, c), the drop in

secretion is accounted for simply and to reasonable accu-

racy by using the quadratic quasi-steady-state relation

derived. Thus, the drop in fluid secretion is mainly due to a

drop in efficiency (for bigger concentration gradients), the

effect of which can be estimated by comparing, in each

case, the linear approximation to the quadratic approxi-

mation (where the quadratic approximation closely follows

the actual simulations). The difference in total secretion

between the panels also includes a part due to a decrease in

chloride current, which can be seen by the slight difference

in the respective fluid flows as calculated from linear quasi-

steady-state relation in each case. This decrease is also due

to the inefficiency of an increase in lumenal concentrations

since the stimulation levels remain the same, though the

fixed-current drop in efficiency represents the dominant

effect.

38 O. J. Maclaren et al.: Efficiency of Primary Saliva Secretion

123



The accuracy of the lumenal chloride transport quasi-

steady-state Eq. (28) decreases with decreasing perme-

ability since the time for the lumen concentrations to reach

their quasi-steady state depends on the size of the lumen

changes (see 27). As the permeability decreases and the

size of the lumenal concentration changes increase, the

lumen does not reach the quasi-steady state as fast. This

means that the convective chloride removal does not
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Fig. 3 Baseline behavior.

There are oscillatory shifts to

new levels for the ions ([Cl]i,

[Na]i, [K]i, [Cl]l), membrane

voltage, total concentrations and

cell volume (a–f, respectively)
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Fig. 4 Simulation plots of fluid secretion for a range of permeabilities.

a Lpa = 1.23 9 10-14 L2 J-1 s-1. b Lpa = 1.23 9 10-16 L2 J-1 s-1.

c Lpa = 1.23 9 10-17 L2 J-1 s-1. Lpb = 4Lpa in all cases. In a all the

traces are indistinguishable. As the permeability is decreased (b, c), the

quadratic quasi-steady-state approximation follows the full simulation

results, while the linear quasi-steady-state approximation overestimates

the secretion, consistent with our prediction of it as an upper bound. In

the lower-permeability range, the quadratic steady state slightly

overestimates the true water-transport rate during rapid spikes
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increase fast enough to balance the fastest spikes in chlo-

ride current, and the quasi-steady state overestimates the

actual chloride removal during these spikes. This deviation

from the quasi-steady-state case represents another

(dynamic) form of inefficiency and needs to be taken into

account when considering any experimentally determined

drop in salt secretion since it is the convective quantity that

corresponds to what would be collected experimentally

from inside (or at the end of) ducts. This will be discussed

further in the context of aquaporin knockouts.

The derivation of the approximate quasi-steady-state

Eq. (34), relating qa and ICl directly, involved the use of the

quasi-steady-state fluid secretion rate obtained from con-

sideration of the volume Eq. (4), along with the assumption

of a fast transition to the quasi-steady state of the lumenal

chloride Eq. (7), given by (28). As discussed, the time for

the volume to reach a quasi-steady state is much longer

than for the lumenal concentrations. Since the size of the

error depends on how close qa is to its steady-state value

during dynamic changes, the error depends on the relative

size of the large, fast increase in qa due to fast lumenal

increases in concentration and the size of the smaller

decrease in qa due to slower increases in total cell con-

centrations. This error decreases on the slow time scale.

Furthermore, the importance of this error is reduced due to

the approximation being used in the term multiplied by the

small parameter �d.

These errors account for the deviations of the approxi-

mation from the actual simulated values, although it still

appears to give a good characterization of the model

behavior. Additionally, we note that since the volume takes

some time to reach a quasi-steady state and has slight

variations about it, we cannot simply assume that the

volume variable becomes slaved to others in the same way

as we might for a truly singular equation. Computing the

volume variable in this way underestimates the total vol-

ume decrease due to the initial larger flux of water from the

apical membrane (calculations not shown). Instead, we

must include the full volume differential Eq. (4).

Acinus Model—Lumenal Coupling

Above, we have discussed the efficiency of saliva secretion

in a single cell; however, the main secretory unit of a

salivary gland is an acinus end piece—a spherically

arranged clump of cells surrounding a shared lumen. A

simple schematic of a section through an acinus illustrating

the arrangement of cells is given in Fig. 5. Secretions into

the lumen are then pushed out into the duct system.

The geometric arrangement of cells in an acinus leads to

the possibility of coupling effects being induced via the

(shared) NaCl concentration in the lumen.

We model an acinus as an arrangement of n cells

secreting into a single lumen by taking a copy of Eqs. 1–6

for each cell, giving for the jth cell:

dð½Cl� ji w jÞ
dt

¼ � I j
Clð½Cl�l; . . .Þ

zClF
þ 2J j

NKCC ð37Þ

dð½Na� ji w jÞ
dt

¼ �3J j
NaK þ J j

NKCC ð38Þ

dð½K� ji w jÞ
dt

¼ 2J j
NaK þ J j

NKCC �
I j
K

zKF
ð39Þ

dw j

dt
¼ q j

b � q j
a ð40Þ

Equation 7 for the lumenal chloride concentration, [Cl]l,

is modified to take into account the chloride flux from each

cell, giving

wl

d½Cl�l
dt
¼
Pn

i¼1 Ii
Cl

zClF
�

Xn

i¼1

qi
a

 !

½Cl�l ð41Þ

again assuming no pressure buildup in the lumen. Each cell

is modeled in the same way, but we allow for different

parameters and/or different constitutive equations as

desired. Here, we will consider the results from identical

cells with heterogeneous levels of cell stimulation (as

would be expected from the spatial arrangement and sep-

aration of the cells), which manifests as a difference in the

chloride currents, Icl
j , for each cell j = 1…n.

Volume Quasi-Steady State

The analysis of the volume equation for a single cell can be

immediately carried over to each cell in the acinus

arrangement (though, as for a single cell, this quasi-steady-

state assumption must be verified by simulation). In

Fig. 5 Salivary acinus (not to scale). Cells are arranged about a

shared lumenal region (hatched)
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particular, for each cell, the quasi-steady-state result (32),

qa = RHLT(cl - ce), applies, i.e., for the jth cell:

q j
a ¼ RHL j

Tðcl � ceÞ ¼ 2RHL j
T½Cl�ld ð42Þ

where

L j
T ¼

L j
paL j

pb

L j
pa þ L j

pb

ð43Þ

Since this expression depends only on the shared lumenal

concentration and the homogeneous external environment,

it follows that at the quasi-steady state, cells with the same

water permeabilities secrete water at the same rate, even

when the cells have different chloride (and sodium)

secretion rates. This indicates that the coupling arising

from the geometric arrangement leads to results that differ

from what would be obtained from a collection of inde-

pendent cells, in this case resulting in similar water

secretions from differently stimulated cells.

Efficiency

Here, we extend the analysis of efficiency to the multicell

case, yielding an analogous result for coupled cells, and

consider the size of coupling effects.

Quasi-Steady State

Firstly, the (quasi-) steady state of (41) can be written as
Pn

i¼1 Ii
Cl

zClF
¼ ð
Xn

i¼1

qi
aÞð½Cl�ld þ ½Cl�eÞ ð44Þ

which can be rewritten as

�ICl

zClF
¼ �qc

að½Cl�cld þ ½Cl�eÞ ð45Þ

where we have used a superscript c to indicate coupled cell

quantities (we do not include a superscript on ĪCl since we

will be interested in fixed currents, regardless of coupling).

Now (42) can be used to write

�qc
a ¼ 2RH�LT½Cl�cld ð46Þ

Scaling each ICl
j as usual (as in 22) but using the

conductivity gCl
j appropriate to cell j, we can obtain a

scale for the average current ĪCl:

�ICl ¼
zClRH

F

Pn
i¼1 gi

ClI
i�
Cl

n

� �
� zClRH

F
�gCl ð47Þ

where the last scale can be obtained by setting the

individual nondimensionalized chloride currents to one.

Following the same procedures as in the single-cell case to

determine the Cl½ �cld scale (using [46] to define the

relationship between �qc
a and Cl½ �cld scales), the appropriate

isosmotic scalings are

½Cl�cld ¼
�gCl

2 �LT½Cl�eF2
½Cl�c�ld ; �ICl ¼

zCl�gClRH
F

�I�Cl;

�qc
a ¼

�gClRH
½Cl�eF2

�q�a ;
ð48Þ

Using (46) to eliminate Cl½ �cld in (45) and substituting the

scales (48) into the result, we then obtain the

nondimensionalized quasi-steady-state equation:

�gCl

2 �LTF2½Cl�2e

 !

�qc�2
a þ �qc�

a � �I�Cl ¼ 0 ð49Þ

we see from this equation that a group of n lumenally

coupled cells behave like (n copies of) a single cell

secreting chloride at a rate equal to the average chloride

secretion rate of the group. Here, we will denote the small

parameter by ac	 �gCl

2 �LTF2½Cl�2e
; which is the ratio of the

average of the chloride-transport parameters to the average

of the fluid-transport parameters (not the average of the

ratio for each cell). As noted in the previous subsection, if

the cells have the same water permeability, LT, then each

cell itself behaves (approximately) like a single cell

secreting chloride at a rate equal to the average secretion

rate of the group. The solution to this equation is analogous

to the single-cell case

�qc�
a ¼

1

ac

� �
1

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ac

�I�Cl

q
� 1

� 	

¼ �I�Cl 1� ac
�I�Cl þ 2a2

c
�I�Cl

� �
þ Oða3

cÞ ð50Þ

so the dimensional flow is

�qc
a ¼

�gClRH
½Cl�eF2

� �
qc�

a 	 �Qc
sqc�

a ð51Þ

where �Qc
s 	

�gclRH
Cl½ �eF2 ¼ 1

n

Pn
i¼1 Qi

s is the scale for coupled

secretion.

Coupling Effects on Efficiency

To compare the efficiency of secretion between isolated

and lumenally coupled cells, we consider each cell to have

a fixed chloride-secretion rate (whether coupled or not)

which differs from its neighbors. We then define the effi-

ciency of fluid secretion (in a way consistent with our

single-cell analysis) as how much fluid is secreted for these

fixed chloride-secretion rates for each cell. It is clear that,

as in the single-cell case, the isosmotic limiting case is an

upper bound on the efficiency of coupled cells.

We address the question of whether, as far as efficiency

is concerned, there is any effect due to the shared lumen

which goes beyond the results obtained for a single cell.
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Therefore, the question becomes, Is the total fluid secretion

higher for n lumenally coupled cells or for n independent

cells (and does this change between isosmotic and non-

isosmotic regimes)? Since the number of cells is the same

in each case, we can rephrase this as follows: Is the average

fluid secretion higher for n lumenally coupled cells or for n

independent cells (and does this change between isosmotic

and nonisosmotic regimes)? This comparison is illustrated

in Fig. 6. We can calculate the average fluid secretion for

coupled cells using (49). The average for the uncoupled

case is computed by first calculating the n independent

fluid secretions for the n chloride currents and then aver-

aging. To define this latter quantity, we first apply (35) to

each independent cell j with current Ij�
Cl and transport

parameters g j
Cl, Lj

T. This gives

q j
a ¼

gj
ClRH
½Cl�eF2

 !

qj�
a 	 Q j

sqj�
a ð52Þ

for each of the dimensional fluid flows, where Q j
s	

g j
cl

RH

Cl½ �
e
F2

is the scale for the jth secretion, and

qj�
a ¼

1

aj

� �
1

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ajI

j�
Cl

q
� 1

� 	

¼ Ij�
Cl 1� ajI

j�
Cl þ 2a2

j Ij�
Cl

h i
þ Oða3

j Þ ð53Þ

for the nondimensional parts. We can then define the

average fluid secretion for n independent cells, �qI
a, as

�qI
a 	

Pn
i¼1 Qi

sq
i�
a

n

¼ 1

n

Xn

i¼1

Qi
s

1

ai

� �
1

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4aiI

i�
Cl

q
� 1

� 	� 	
ð54Þ

Now, we wish to use these two expressions �qI
a and �qc

a to

compare the different average fluid secretions, i.e., to

consider the difference in the average (and hence total)

secretion in the coupled and independent cases. Since

qj�
a ! 1 as ai ! 0 and qc�

a ! 1 as ac ! 0

�qI
a ¼

Pn
i¼1 Qi

s

n
	 �Qc

s	
1

n

Xn

i¼1

Qi
s for isosmotic secretion

ð55Þ

and

�qc
a ¼ �Qc

s	
1

n

Xn

i¼1

Qi
s for isosmotic secretion ð56Þ

These expressions are identical, and hence, the coupled and

independent cell secretions are the same for isosmotic

cases. This value is simply the average of the independent

isosmotic secretions. We now wish to make the comparison

in the nonisosmotic case. Since we are considering fixed

chloride currents, while allowing the permeabilities to

vary, we can set each of the nondimensional chloride

currents to 1 so that the fixed value of each current is

determined solely by its associated scaling factor. Next, we

normalize each of the expressions for average fluid flow

(the coupled and independent cases, respectively) relative

to the shared isosmotic upper bound

Pn

i¼1
Qi

S

n . These two

normalized averages can then be expressed as

�qI
a

� ��	 �qI
aPn

i¼1
Qi

s

n

� � ¼
Pn

k¼1 Qk
s f ðakÞPn

i¼1 Qi
s

¼
Pn

k¼1 gk
Clf

gk
Cl

Lk
T

� �

Pn
i¼1 gi

Cl

ð57Þ

(note this quantity is nondimensionalized as a whole since

adding individually nondimensionalized quantities of the

same type makes no physical sense when the scales are

chosen differently—e.g., adding the numerical value of two

lengths, one in centimeters and the other in meters, is

physically meaningless) and

�qc�
a 	

�qc
aPn

i¼1
Qi

s

n

� � ¼ f ðacÞ 	 f

Pn
k¼1 gk

ClPn
i¼1 Li

T

� �
ð58Þ

respectively. As mentioned, the nondimensional chloride

currents are fixed at a value of 1 in the function f so that

its argument is simply an a value. This function is the

same as that represented in panel 2 of Fig. 2. A beneficial

coupling effect on secretion will be indicated by

�qc�
a [ �qI

a

� ��
, and conversely, if �qI

a

� ��[ �qc�
a , then

coupling has a detrimental effect on total secretion. In

Appendix C we show that

�qc�
a � �qI

a

� ��
for non-isosmotic secretion ð59Þ

follows from the convex, strictly decreasing nature of

f(a)—or, equivalently, the concave, strictly increasing

nature of F bð Þ ¼ f 1
a

� �
. Equality in (59) only holds when

the aj are all identical. Hence, in general, for nonisosmotic

Fig. 6 Illustration of the comparison of the secretion from n inde-

pendent cells to the secretion from n lumenally coupled cells, for

fixed chloride currents. For simplicity, the diagram shows the case of

three cells when independent compared to the same three cells (with

fixed chloride currents) when lumenally coupled
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secretion there is a beneficial effect on the average (and

hence the total) secretion due to the lumenal coupling.

Despite the possibility of a beneficial coupling effect, the

effect on secretion is never enough to make up for the dif-

ference in secretion between isosmotic and nonisosmotic

regimes. As shown, the isosmotic case is an upper bound for

both coupled and uncoupled secretion. Since the coupling

effect is mathematically due to the convexity (concavity) of

the function f ðaÞ ðFðbÞÞ, we expect the effect to be greater

for greater ranges of a (b) values (for small ranges any dif-

ferentiate function is close to linear). Thus, this coupling

benefit plays an essentially compensatory role for deviations

from normal function—a positive coupling effect requires

nonisosmotic secretion and a significant spread in parameter

values. We can summarize these results with the ordering

isosmotic independent = isosmotic coupled [ nonisos-

motic coupled [ nonisosmotic independent, where the

ordering is with respect to efficiency.

This does not quite complete the analysis, however,

since we have compared cases at fixed chloride currents.

As mentioned, it may be the case that coupling signifi-

cantly modifies the chloride currents; i.e., a coupled

arrangement may have a higher or lower total fluid secre-

tion than that calculated for fixed chloride currents if the

average chloride current increases or decreases due to

interactions via the shared lumen. We can easily rule this

out in the isosmotic case—although the fluid-secretion

rates change when coupled (to close to a common rate as

shown in the previous section), we would expect no change

in the chloride secretion. The difference between the two is

that the fluid secretion depends very sensitively on small

changes in lumenal concentrations due to the large per-

meability, while changes in chloride secretion require

much larger lumenal changes for non-negligible effects.

Since, by assumption, in the isosmotic case all changes in

the lumen are negligible, the cells do not ‘‘see’’ each other

via the lumen and, thus, each cell continues to secrete

chloride as it did before.

The nonisosmotic case is not so straightforward—

although it may be reasonable to simply assume the aver-

age chloride current will not change significantly when

cells are coupled (although some individual currents may

go up or down), it depends on the details of the model. To

check the reasonableness of this assumption and to verify

some of our results obtained so far, we turn next to

simulation.

Simulations

As in the single-cell case, we now validate and extend the

analysis we have undertaken by considering a particular

model with specific flux equations, signaling dynamics and

parameters, allowing model simulation. Each cell in the

multicell simulation is identical (other than initial condi-

tions and/or ‘‘stimulation parameter’’ m) to that discussed in

the single-cell case. For simplicity of presentation, we

illustrate the results here with the case of three cells;

however, the results hold for any number.

Individual Secretions

Figure 7 illustrates the individual secretions from differ-

ently stimulated cells in an acinus arrangement. The

choices of stimulation parameter (m, the maximum rate of

IP3 production) correspond to a representative range

between the minimum and maximum values used by Palk

et al. (2010) in their calcium model. The details here are

unimportant; essentially, higher parameter choices corre-

spond to a more stimulated cell. Although each cell is

stimulated differently and has different chloride and

sodium currents from each cell as well as different ion

levels, we see that, consistent with our analysis, the fluid

secretions change and are close to identical in this case.

The two more highly stimulated cells each have decreases

in their time-averaged fluid secretion rate of between 12

and 13% when lumenally coupled compared to their

secretion rates when uncoupled, while the cell with the

lower stimulation has an increase in secretion of about

25%. In accordance with the discussion of efficiency, the

effect on total secretion appears to be small, if any. In the

subsection following the next, we consider whether there

are any coupling effects on chloride currents, and hence

fluid secretion, as the permeability is decreased and

lumenal concentrations increase.

Efficiency of Secretion

As in the single-cell case, simulations verify that a change

in efficiency for different sizes of concentration gradient
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Fig. 7 Individual secretions from differently stimulated cells. Each

cell is stimulated differently, but, due to the shared lumen, they

secrete saliva at close to the same rate. Lpa = 1.23 9

10-14 L2 J-1 s-1 and Lpb = 4Lpa in all cases
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accounts for the majority of changes in total fluid secretion

under coupled conditions (Fig. 8). Each cell still secretes at

close to a common rate (not shown), but this common rate

decreases away from the isosmotic regime, accounting for

the reduction in total secretion. During rapid spikes, the

difference between the quadratic quasi-steady state and the

actual simulations for lower permeability values appears

less than in the single-cell case; however, this is due to

each cell being stimulated differently—some cells are

oscillating less than they would be for the typical m value

(the calcium oscillations decrease either side of the typical

stimulation value). When each cell is stimulated at the

same, typical, value (producing the largest oscillations) the

actual secretion again fails to full reach the quasi-steady-

state value during rapid spikes, for lower-permeability

cases.

Secretion from an Acinus Versus Independent Secretion

Finally, we consider comparisons between coupled and

uncoupled cells. As discussed previously, it is relatively

easy to compare fluid secretions analytically at fixed

chloride currents to analyze efficiency. Whether or not

there is any net change due to a change in average or total

chloride secretion, e.g., is a harder question and depends on

the model details chosen. Figure 9 shows comparisons

between independent cells and coupled cells for a range of

permeabilities (i.e., for secretion under different condi-

tions, isosmotic/high permeability and nonisosmotic/lower

permeability). From these simulations, we see that, as

predicted, the total fluid secretion is identical under isos-

motic conditions, while there are small but essentially

negligible changes in the total fluid secretion under non-

isosmotic conditions, even though the individual secretions

change to a common rate. For the model chosen the

average chloride current did not show any significant dif-

ferences between the coupled and uncoupled cases, though

there was a small (around 1%) decrease in average current

between coupled and uncoupled cases, for the lower-per-

meability values. The range of chloride currents—a range

of about 23% of the current at normal stimulation—means

that the convexity/concavity effects are not expected to be

large. This, combined with the negligible decrease in total

current, means that only a negligible coupling effect of any

sort is observed on total secretion. Thus, under typical

parameter variations, we do not expect non-negligible

lumenal-coupling effects.

Discussion

Recent models of salivary secretion, e.g., those of Gin et al.

(2007) and Palk et al. (2010), are relatively easy to simulate

using appropriate computational tools; but it can be diffi-

cult to understand the results in a simple manner. Wein-

stein and Stephenson (1979, 1981a, b) combined analysis

of a high-level model of a single neutral solute with more

comprehensive simulation models in a particularly careful

and insightful manner. The work we have presented fol-

lows in this spirit by focusing on key general features of

water transport, combining both approximate analysis and

simulations. We have focused attention on a physiologi-

cally detailed, dynamic saliva-secretion model. Most of the

prior work has placed more emphasis on fluid absorption,

often from a small compartment into a larger compartment;
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Fig. 8 Efficiency of total secretion under coupled conditions. a Lpa = 1.23 9 10-14 L2 J-1 s-1. b Lpa = 1.23 9 10-16 L2 J-1 s-1.

c Lpa = 1.23 9 10-17 L2 J-1 s-1. Lpb = 4Lpa in all cases

Fig. 9 Comparison of the time-averaged total secretion from inde-

pendent and coupled cells for a range of permeabilities. Top group
Lpa = 1.23 9 10-14 L2 J-1 s-1. Middle group Lpa = 1.23 9 10-16

L2 J-1 s-1. Bottom group Lpa = 1.23 9 10-17 L2 J-1 s-1. Lpb =

4Lpa in all cases
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and the analytic work has focused on steady-state condi-

tions, as opposed to quasi-steady-state conditions. Fur-

thermore, most of the prior analytic work considers

linearizations/perturbation expansions about isotonic/isos-

motic conditions. In the context of saliva secretion into a

small lumenal space, we have considered conditions for,

and deviations from, quasi-steady-state conditions, devia-

tions from isotonic/isosmotic secretion as well as effects of

lumenal coupling. The main physiological application we

discuss here, beyond consideration of conditions for iso-

tonic/isosmotic secretion discussed in the next subsection,

is to the interpretation of, and debate surrounding, aqu-

aporin knockout studies, discussed below.

Isotonic/Isosmotic Water Transport: Relationship

to Previous Studies

A consistent theme in discussion about fluid transport in

epithelia is how isotonic/isosmotic water transport is

achieved. The most commonly accepted view is that water

follows salt secretion osmotically, and this, combined with

relatively large water permeabilities (due to the presence of

aquaporins), is sufficient to account for the basic phe-

nomenon of saliva secretion (Spring 1999). As discussed

by Turner and Sugiya (2002), one of the main problems

with this hypothesis is that it is very difficult to demon-

strate the existence of osmotic gradients between the

interstitium and lumen. However, due to the high water

permeability, it is supposed that only very small gradients

are required (Spring 1999), so this becomes a problem of

verifiability rather than an inconsistency with the hypoth-

esis itself. Other evidence, in particular that based on

aquaporin knockout studies (e.g., Ma et al. 1999), is usually

taken to weight the evidence in favor of the osmotic

hypothesis. However, the interpretation of these knockout

studies has been criticized by researchers such as Hill et al.

(2004) and Fischbarg (2010). We discuss this further

below.

Our model is a compartment model based on an osmotic

coupling mechanism. In terms of the original Curran

(1960) model for epithelial transport, mapped onto the

physiology of saliva secretion, the lumen plays the role of

the ‘‘middle’’ compartment for the secretion out of the cell,

though the cell itself also draws water through the baso-

lateral membrane. Friedman (2008) offers a good discus-

sion of how the Curran (1960) model can be used as the

basic model for various physiological systems. Weinstein

and Stephenson (1979, 1981a, b) emphasized a number of

important distinctions relevant to key questions of epithe-

lial transport, in particular the different parameter and

boundary condition dependencies of the cases of approxi-

mate isotonicity and exact isotonicity/uphill transport.

Similarly, Mathias and Wang (2005) presented a series of

simple theoretical models, also based on the Curran (1960)

compartment model, to investigate conditions for the

generation of isotonic water transport using the osmotic

mechanism. They analyzed two variations of a simple two-

membrane steady-state model, one without an imposed

boundary condition on the secretion (i.e., the osmolarity of

the secretion is determined from the balance of salt and

water transport) and one with an imposed boundary con-

dition, setting the osmolarity to be exactly equal at each

end. Due to the large permeabilities, the model behavior

has a strong dependence on the selection of boundary

conditions. This observation is consistent with the earlier

work of Weinstein and Stephenson (1979, 1981a, b).

The first case considered by Mathias and Wang (2005) is

most appropriate for models of saliva secretion due to our

assumption of no pressure buildup in the lumen of a

secretory end piece; i.e., any saliva previously secreted is

pushed out of the lumen by newly secreted saliva (and then

travels through a system of ducts before exiting into the

mouth). This corresponds to the case discussed by Wein-

stein and Stephenson (1979, 1981a, b) of transport into a

small serosal bath from a larger mucosal bath (which they

discuss in reference to a hanging gallbladder experimental

arrangement). For saliva secretion, this means that con-

centrations in the lumen are determined by a balance of salt

and water transport. This is consistent with recent models

published for saliva secretion (Gin et al. 2007; Palk et al.

2010).

These single-cell models of saliva secretion explicitly

account for changes over time (i.e., are dynamic models),

while the cells are modeled as well mixed. The model of

Mathias and Wang (2005) does not include time, and in the

case of interest, the spatial gradients are negligible.

Weinstein and Stephenson (1979, 1981a, b) include some

dynamics in their simulation model, but their correspond-

ing theoretical treatment focuses on steady states (as

opposed to quasi-steady states). Our analysis of the Gin

et al. (2007) model of saliva secretion from a parotid acinar

cell allows us to consider how (linearized/perturbation)

analysis such as that of Mathias and Wang (2005) and

those of Weinstein and Stephenson (1979, 1981a, b) carries

over to a dynamic, physiologically based model of fluid

secretion, regulated by an oscillating calcium signal. Our

analysis shows that a large membrane permeability (rela-

tive to chloride conductivity) both is required for and leads

to isosmotic secretion for osmotically driven saliva secre-

tion. The scale of small deviations from iso-osmolarity is

shown to be inversely proportional to the membrane per-

meability and proportional to the ratio of chloride-transport

and fluid-transport terms. Furthermore, the case of isos-

motic secretion provides an upper bound on saliva secre-

tion efficiency for both single cells and cells arranged in an

acinus. These results are in agreement with the work of the
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aforementioned authors in their particular models. As dis-

cussed in Gin et al. (2007) and Palk et al. (2010), the basic

model used here is in good agreement with estimates of

total saliva secretion and of other quantities of interest such

as membrane potential.

Aquaporin Knockout Studies

Overview

Hill et al. (2004) and Fischbarg (2010) (among others) have

criticized the usual interpretation of aquaporin knockout

studies in the context of epithelial fluid transport. In par-

ticular they focus on the fact that, in aquaporin knockout

animals, water permeability is often reduced by a larger

proportion than is the water transport. Although some

studies, such as that of aquaporin-5-deficient mice by

Krane et al. (2001), do not appear to suffer this issue, we

will consider the more extreme cases of apparent conflict

from a general point of view informed by our modeling

work and give a representative quantitative comparison to

the results of Ma et al. (1999) for aquaporin-5 knockout

mice, as they are summarized in Hill et al. (2004). This

requires consideration of cases for which the osmotic

gradients become more significant than can be appropri-

ately treated with a perturbation expansion near the iso-

tonic/isosmotic secretion regime.

Hill et al. (2004) emphasize two interconnected points in

their critique of the ‘‘simple permeability hypothesis’’

(SPH, the hypothesis being that the main role of aquaporins

is to provide a path of increased water permeability to

increase water transport). This hypothesis plays a crucial

role in providing the large permeabilities required for the

osmotic mechanism. The first, and main, point the authors

raise is that the differing magnitudes of the reduction of

permeability, on the one hand, and the reduction of water

transport, on the other, raises problems for this hypothe-

sis—as they say, ‘‘SPH would predict that the removal of a

major pathway of water flux across membranes would have

drastic effects on biological function at the cellular, tissue

and whole animal level’’ (Hill et al. 2004, p. 8), and ‘‘where

fluid flow has been significantly reduced… it has only been

partial where it should have been substantial’’ (p. 11). The

second point they raise is that there often appears to be a

reduction in the total salt transport, which would by itself be

enough to account for a significant portion of the reduction

in fluid transport, without leaving much to be accounted for

by the reduced water permeability. Though they acknowl-

edge that their calculation of the reduction in salt transport

is complicated by the possibility of changes in ductal

absorption, the point remains that any reduction in salt

transport leaves less reduction in fluid transport to

be directly attributable to the decreased membrane

permeabilities. Thus, the overall point raised is that large

reductions in water permeability due to aquaporin knock-

outs do not appear to be having a significant enough effect

on water-transport rates. Representative changes cited by

Hill et al. (2004) are around 40–60% for both fluid and salt

transport and up to 90% for membrane permeability,

although these vary across the range of studies they

consider.

Here, we consider whether such changes really are

inconsistent with a model such as ours, which is based on

the SPH and the corresponding osmotic mechanism for

saliva secretion. Quantitative comparisons of model and

experiment are discussed in the following subsection;

however, we first note that according to the relationship

(35) (illustrated in Fig. 2), a drop in fluid transport essen-

tially has two components—one due to a decrease in the

chloride current and one due to a drop in efficiency (i.e.,

when permeability is lowered and the osmotic gradient

increased). As the isosmotic regime is approached (the

large permeability limit), these effects become essentially

independent. Furthermore, as this regime is approached,

the fluid transport loses all dependence on permeability—

the dependence disappears according to an inverse rela-

tionship in permeability (since a * 1/LT). So when the

physiological system is in this parameter range, a drop in

chloride current is associated with a direct linear decrease

in fluid transport, while a significant drop in permeability

may not have much effect at all. As long as the ratio of

chloride conductance to water permeability is sufficiently

small, the system will remain in this regime. Thus, the role

of aquaporins may be not only to increase the fluid trans-

ported for a given amount of salt transport but also to push

the system into a regime where it is more robust to varia-

tions in permeability.

Comparison to Experiments

The water permeability used in the simulation shown in

Fig. 4c is an order of magnitude lower than the water

permeability used in the simulation shown in Fig. 4b. This

corresponds to a drop in water permeability of 90%. At the

same time, the drop in fluid flow (here denoted by Jv

instead of qa) is only about 51%. A comparison of these

results with those of Ma et al. (1999) as summarized by

Hill et al. (2004) is given in Table 1. As can be seen, these

results are of a similar scale to those of Ma et al. (1999),

which Hill et al. (2004) cite as being in conflict with the

SPH. In particular, the large drop in water permeability (of

90%) produces a much less marked drop in fluid secretion

(51% in the model, 59% observed experimentally), along

with a drop in convective salt collection rate (Js) (27%

compared to 41% observed experimentally). It is apparent

that a large reduction in water permeability is not
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inconsistent with a smaller reduction in fluid secretion,

according to results produced entirely according to the SPH

mechanism. The drop in (measured) salt transport is also

largely accounted for, and actually corresponds to a much

lower decrease in the chloride current (ICl) itself (19%),

due to deviations from quasi-steady-state behavior (as

discussed above, Numerical Simulations). Further decrea-

ses in chloride-transport rates not accounted for in the

model could be due to changes in duct absorption rates in

knockouts (affecting Js) or other changes in cell chloride

secretion (affecting ICl and Js) in knockouts.

The effect of a 99% permeability decrease on water

transport is even less going from Fig. 4a, b as these are

further in the isosmotic parameter range, and hence, the

results are even less susceptible to variations in perme-

ability. The water permeability values used here were

originally model fits by Gin et al. (2007), and the largest

value used is probably one to two orders of magnitude too

large, based on the range for typical epithelia (Spring

2010). The exact membrane water permeabilities are dif-

ficult to measure in glandular acini (Hill et al. 2004), and

we are not aware of any values for parotid glands in the

literature. However, in our representative comparison with

aquaporin studies given above we used a baseline perme-

ability of two orders of magnitude less than that of Gin

et al. (2007) (Fig. 4b) and then considered a further order

of magnitude decrease (Fig. 4c), consistent with the

expected range of permeability values (we present a con-

version from our units for water permeability to an

equivalent Pf value in Appendix A). Based on our results

(including those given below), we would expect the per-

meability of parotid acinar cells to be similar to that of

other high-permeability cells in other water-transporting

epithelia such as the lung (Dobbs et al. 1998) and renal

proximal tubule (Meyer and Verkman 1987), i.e., a Pf of

the order 10-2 cm s-1.

Acinus Geometry

Mathematical models of saliva secretion (e.g., Gin et al.

2007; Palk et al. 2010) have so far focused on single cells.

However, in this analysis we have begun to consider the

effects of acinus geometry on secretion. In particular, we

considered the coupling effect induced by the shared lumen

of an acinus on the dynamics of the cells making up that

acinus. We demonstrated how to carry over the results for

efficiency and isosmotic/nonisosmotic secretion to this

case. Furthermore, we illustrated two key points. Firstly,

the individual fluid secretions of member cells in an acinus

are in fact modified by the arrangement of the cells around

a single shared lumen. Differently stimulated cells can

secrete fluid at close to identical rates when arranged into

an acinus, while this is not the case for isolated cells.

However, the total fluid secreted from an acinus is not

affected by this lumenal coupling. It is worth noting that in

real salivary glands the lumenal structure can be more

convoluted and is continuous with intercellular canaliculi

(Riva et al. 1993).

Calcium Signaling

In this work we included an oscillating calcium signal

which, e.g., leads to deviations from (quasi-) steady-state

behavior. We have not considered effects of the acinus

geometry on this calcium signaling. Work in progress

includes, from the single-cell perspective, incorporating

calcium waves (originating at the apical end) to explore the

observation of the relatively rapid calcium wave speed (e.g.

compared to that in the pancreas [Giovannucci et al. 2002])

in the context of the type of signaling that works best for

fluid secretion. In the multicellular case, work has begun to

explore the effects of the inclusion of gap junctions on

calcium signaling and hence fluid secretion. In each of

these cases, the analysis of the salt and water coupling

effects carried out here forms a foundation from which to

consider these extensions. The effects of variations in

calcium signaling, in both a single cell and an acinus, can

profit from the reduction in complexity of the fluid secre-

tion model, e.g., utilizing the simple relations derived

between fluid secreted and chloride current. Changes in

transporters and ionic mechanisms can also be understood

using modifications of the analysis carried out here.

Table 1 Comparison of aquaporin knockout studies and representative model dependence on water permeability

Knockout Model

DPosm DJv DOsm DJs DPosm DJv DOsm DJs AICl

-65 to -90%a -59% ?43% -41% -90% -51% ?41% -27% -19%

Data are from Ma et al. (1999) and include an estimate of Jv changes as calculated by Hill et al. (2004)
a Ma et al. (1999) did not measure the decrease in cell membrane permeability in their knockout experiment. Krane et al. (2001) found a relative

decrease in permeability (as measured by changes in swelling/shrinking rates) in aquaporin-knockout mice of 65% for parotid and 77% for

sublingual cells. Aquaporins are estimated to account for up to 90% of cell water permeability in various physiological systems, as summarized

by Hill et al. (2004)
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Transport Routes and Ionic Mechanisms

The chloride-based mechanism adopted in this report is

thought to account for the majority of saliva secretion from

the major salivary glands. But it is also thought possible

that bicarbonate exits the cell via the same apical anion

channel as chloride (Turner and Sugiya 2002), and we have

not represented this mechanism in our model. There may

be interesting consequences of including this additional

mechanism; however, the essential feature of anion secre-

tion via the apical membrane and cation flow via the tight

junctions (establishing an osmotic gradient in the lumen) is

the same. Since the water secretion into the lumen washes

all ions away, in principle there must be a bicarbonate

current into the lumen; here, it is essentially assumed that it

would in reality make up some fraction of the total apical

anion current into the lumen, which for the same osmotic

gradient would mean a slightly lower chloride current than

is present in this model. The proper inclusion of bicar-

bonate in the model remains future work, as does the

inclusion of details from other suggested ionic mechanisms

(Turner and Sugiya 2002; Cook and Young 2010).

The effect on secretion of a possible apical K? channel

was considered by Cook and Young (1989) and more

recently by Palk et al. (2010). While our analysis could be

extended to cover this, it is beyond the scope of the present

study. In our model Na? and K? travel only via the para-

cellular pathway, which is assumed to be cation-selective

in accordance with the basic proposed mechanisms of

saliva secretion (Cook and Young 2010). In general, these

ionic fluxes will be driven by their electrochemical gradi-

ents, as well as by convection by any water traveling via

this same pathway. We ignore direct ion–ion interactions;

however, if solute reflectivities differ between two (or

more) parallel pathways (e.g., the paracellular pathway and

the cell) through which water also travels, then cross-terms

in overall (or ‘‘composite’’) epithelium system equations

can still occur. These represent formal ion–ion interactions

and can have important consequences for the interpretation

of tracer flux experiments and the determination of per-

meabilities (Weinstein 1987). Since in our model we

assume a fully transcellular pathway for water (consistent

with the assumption of an osmotic mechanism as discussed

in the Introduction), these formal composite-system inter-

actions are not present (Weinstein 1987; Friedman 2008).

Despite this, it still may be of interest to consider a

paracellular water flux, via either an osmotic mechanism or

some other mechanism, to better clarify and understand the

model dependence on this assumption and the conse-

quences for determining parameter values experimentally.

Gin et al. (2007) and Palk et al. (2010) both considered a

paracellular water flux; however, they did not consider an

explicit convective solute flux (or any other similar

paracellular flux coupling, as can be formalized using the

framework of nonequilibrium thermodynamics [Schultz

1980]). Without this, they found no qualitative differences

in model behavior. This can be explained by the expression

we derived for the secretion from a cell (32) (which applies

for both isolated cells and cells in an acinus), which is

dependent only on the lumenal and interstitial concentra-

tions and thus has the same form as a simple paracellular

flux. Finally, we note that the specific equations repre-

senting the paracellular ion fluxes will change depending

on the included mechanisms, but the electroneutrality

equation that we use (11) holds (approximately) regardless

of the mechanism of ion flux.
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Appendix A: Water Permeability

We have used the units L2 J-1 s-1 for water permeability,

in line with Palk et al. (2010) and which we found con-

venient for simulation and analysis but which are not as

common among physiologists. A variety of quantities

characterizing water permeability are in use in epithelial

water-transport studies; here, we give a conversion from

our water permeability to an equivalent Pf (‘‘osmotic water

permeability’’) quantity, which is measured in centimeters

per second.

We first note that our permeability is an area-weighted

quantity, as employed by Gin et al. (2007) and Palk et al.

(2010). We use the data from Cope and Williams (1974)

and Poulsen and Bundgaard (1994) to give a typical value

for apical membrane area of about A = 1.25 9 10-6 cm2.

The remaining quantities required for conversion are

R = 8.315 J mol-1 K-1, H = 310 K, Vw = 18 9 10-3 L

mol-1 and 103 cm3 = 1 L. The relationship between our

Lpa and the quantity Pf, expressed using these quantities, is

(Persson and Spring 1982)

Pf ¼
103RHLpa

AVw

ð60Þ

where 103 is a conversion factor for
Lpa

Vw
(the ratio of which

has units L mol J-1 s-1) from liters to centimeters cubed.

This gives an equivalent value for Pf of about 1.41 cm s-1

for our highest permeability (Lpa = 1.23 9 10-14 L2

J-1 s-1) and a value of about 1.41 9 10-2 cm s-1 for the
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value we take as representative in our comparisons to

aquaporin knockout studies (Lpa = 1.23 9 10-16 L2

J-1 s-1). This latter value is similar to those of other water-

transporting epithelia, as discussed in the main text, while

the higher value represents a limiting case.

Appendix B: Calcium Signaling Model Modification

As noted by Palk et al. (2010), the Gin et al. (2007) model

appeared to have a dependence of calcium oscillations on

volume oscillations, which they deemed undesirable.

Because of this, our calcium model follows that of Palk

et al. (2010). The only difference is that our model uses a

Hill function expression for IP3 production

JIP3prod ¼ mw0

½Ca�2i
½Ca�2i þ K2

ð61Þ

where K = 5 nM and m is a control parameter with a

typical value of 5,100 M s-1, while their model has a

constant production rate:

JIP3prod ¼ mw0
ð62Þ

This makes no difference to the results. The rest of the

signaling model is identical and follows the details given in

their paper (see pp. 626–628 and Tables 1–3).

Appendix C: Beneficial Coupling Effect

Function Properties

We state without proof that, for a 2 0;1½ Þ, the function

f að Þ ¼ 1
a

� �
1
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a
p

� 1
� �

is (1a) convex and (2a)

strictly decreasing. We define the value at a = 0 to be the

limit as a ? 0, which exists and is equal to 1. Defining the

new variable b = 1/a, we can define the new function:

F bð Þ ¼ bð Þ 1

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4
1

b

� �s

� 1

" #

¼ f 1=bð Þ

Over b 2 ½0;1Þ, this function is (1b) concave and (2b)

strictly increasing. We again state this without proof.

However, these function properties can be verified simply,

by plotting the functions (for positive values) along with

the first and second derivatives. A negative (positive) first

derivative indicates a decreasing (increasing) function, and

a positive (negative) second derivative indicates a convex

(concave) function. The freely available computational tool

Wolfram Alpha (www.wolframalpha.com), e.g., can be

used. This can compute the derivatives and handle the

singularity at zero automatically.

Positive Coupling Effect

Now we can write (57) and (58) (derived for fixed chloride

currents) as

�qI
a

� ��¼

Pn
k¼1 gk

ClF
Lk

T

gk
Cl

� �

Pn
i¼1 gi

Cl

ð63Þ

and

�qc�
a ¼ F

Pn
k¼1 Lk

TPn
i¼1 gi

Cl

� �
¼ F

Xn

k¼1

gk
Cl

Lk
T

gk
Cl

� �

Pn
i¼1 gi

Cl

0

@

1

A ð64Þ

Thus, (63) is a weighted average of F evaluated at each

L j
T

g j
Cl

� �
value, while (64) is equal to F evaluated at the

weighted average of the
L j

T

gj

Cl

� �
values. By Jensen’s

inequality (Hardy et al. 1997) applied to concave, strictly

increasing F
L j

T

g
j

Cl

� �
, it follows that

�qc�
a � �qI

a

� �� ð65Þ

where the inequality is strict when the
L j

T

g j
Cl

� �
values are not

all identical. This gives the required result.
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